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Abstract

The Polynomial coefficient function Fn, from n in itself, is given by the function Fn that
provides the coefficients of the polynomial (x – a
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) : Fn = a
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, ..., a
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.

(b
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) : 

i=1,n
(x – a

i
) = xn + b

1
xn–1 + b

2
xn–2 + ... + b

n
. A proof of the fundamental

theorem of algebra is given where the surjectivity of this function is obtained from a
Recurrent Coefficient Equation.
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1. Introduction

The Fundamental Theorem of Algebra (FTA) asserts that any polynomial with complex coefficients has a root in the
field of complex numbers. In a different form, it was stated by Albert Girard in 1629 and René Descartes in 1637. Colin
MacLaurin and Leonard Euler gave a formulation, that is proven equivalent to the previous one. According to FTA, any
polynomial with real coefficients can be decomposed into a product of linear and quadratic factors with real coefficients.
In modern terms, the theorem says that the field  of complex numbers is algebraically closed (a polynomial with
coefficient in  has solutions in ). Tentatives of proof were given by d’Alembert (1746), Euler, Laplace, Lagrange, and
others in the second half of the 18th century. Carl Friedrich Gauss was the first to prove the theorem in an almost
complete way. He gave four different proofs, the first in 1799 and the last in 1849 (almost at the end of his life). He was
never satisfied with his proofs. Namely, the theorem involves some form of topological properties, not rigorously
defined in Gauss’ time, related to the completeness of complex numbers (having the limits of all their Cauchy sequences).
Many proofs are available now, deduced by algebraic, topological, and complex analysis arguments (see Arnold, 1949;
Courant and Robbins, 1941; Dunham, 1991; Kline, 1972; Lang, 1974; https://en.wikipedia.org/wiki/Fundamental–theorem–
of–algebra) for detailed accounts of the history and proofs of the theorem). We recall that: i) n is the product of n
copies of the complex plane; ii) according to the Heine-Borel theorem (Dugundji, 1966; Kelley, 1975), any bounded and
closed set of n is a compact set; iii) for any continuous function f from n into n, the image of a compact set is a
compact set too; iv) the image of the frontier X  of a compact subset X of n coincides with the frontier of the image
f(X) (the images of internal points of X are the internal points of the image).

2. A Proof Based on the Polynomial Coefficient Function

A formulation of the fundamental theorem of algebra is as follows:
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Theorem 1: For any polynomial P(x) of degree n > 0, with complex coefficients, there are a
1
, a

2
, ..., a

n
  , such that P(x)

= (x – a
1
) (x – a

2
) ... (x – a

n
).

This formulation is equivalent to claim the surjectivity of the Polynomial coefficient function Fn:

Fn : n  n:

Namely, if Fn is surjective, then we can conclude that the complex coefficients of any nth-degree polynomial are the
image of the Polynomial coefficient function applied to n complex numbers (the polynomial roots). In symbols, if Fn è
surjective and P(x) = b

0
xn + b

1
xn–1 + b

2
xn–2 + ... + b

n
 there exists a vector (a
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) such that (b
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1
, a

2
, ..., a

n
), that is:

P(x) = (x – a
1
)(x – a

2
) ... (x – a

n
).

In a sense, the function Fn inverts the equation-solving process in that of equation-making. Of course, Fn is easy to
compute from the roots, while equation-solving is generally very difficult to obtain (Fn is a one-way encoding). Here we
develop a proof of Fn surjectivity by combining basic notions of general topology in hyperspaces of any finite
dimension over complex numbers and a recurrent equation holding for Fn.

Theorem 2: Fn : n  n is surjective.

Proof

Let us fix a value for n, the arguments we develop apply to any value of n. For the sake of brevity, in the following, we
drop the exponent n of the function Fn that provides the coefficients of the polynomial (x – a

1
) (x – a

2
) ... (x – a

n
).

It is easy to verify that coefficients b
1
, b

2
, ..., b

n
 are respectively given by the functions:

F
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.........

     1 2 1 2, , , 1
n

n n n nF a a a a a a b    ...(1)

Of course, functions F
k
, for k = 1, 2, ..., n, are continuous, therefore also F = (F

1
, F

2
, ..., F

n
) is continuous. However,

F is not injective because permutations of the same vector will provide the same F image.

Let u = (1, i) and (0, 0) = 0. For k = 1, 2, ..., n with m a natural number greater than 1, we call z
k
 m-pair the hyperplane

pairs of n:

z
k
 = –mu, z

k
 = mu.

The z
k
 m-pairs, for k = 1, 2, ..., n, determine the portions of the space between them. The set of points between all the

z
k
 pairs mutually orthogonal defines, for every m, the H

m
 n-cubic m-block centered on the origin 0n of n:

  1 2, , , | , 1, 2, ,m n kH z z z mu z mu k n     

where   is the partial order over complex numbers x iy x iy    if x x e y y   (which extends to n applying the

condition on all the components). The family  | , 0mH m m  H provides a covering of the hyperspace n.

The block H
m
 has 2n vertices, and the vertex (mu, mu, ..., mu) is called the superior vertex, while (–mu, –mu, ..., –mu)

is called the inferior vertex. The remaining vertices are (+mu, +mu, ..., +mu) for all possible choices of signs + or – in any
component.

The image F(H
m
) = {(F

k
(Z)|Z  H

m
, k = 1, 2, ..., n)} is a compact set of n because H

m
 is compact and F is continuous

(which sends compacts into compacts). Moreover, in n any closed and bounded set is compact (Heine-Borel’ss
theorem). The image F(H

m
) of H

m
 has (n + 1) vertices:
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Z
0
 = F(mu, mu, ..., mu)

Z
1
 = F(–mu, mu, ..., mu)

Z
2
 = F(–mu, –mu, ..., mu)

… … …

Z
n
 = F(–mu, –mu, ..., –mu)

We know that a metric complete space such as n contains all the limits of Cauchy sequences in the space, and any
closed subset of the space, is complete (Dugundji, 1966; Kelley, 1975). Therefore, for any closed and bounded set X of

n,    F X F X   .

Let (F(H
m
)) be the radius of F(H

m
), as the minimum norm (distance from the origin) reached by the points of the

frontier  mF H  of F(H
m
).

We will prove that, for  , 1mE H F E mu   . This means that for increasing values of m the radius of F(H
m
)

grows illimitably so that any vector in n is an image of F, whence the surjectivity of F follows.

In the following, we use n + 1 rather than n (with no loss of generality because n is a generic value, and the theorem
we are proving holds trivially for n = 1).

Let a  , we denote by [a, E] the vector of n+1 extending E  n, such that:

[a, E]
1
 = a

and, for k = 1, ..., n:

[a, E]
k+1

 = E
k
.

Symmetrically, for k = 1, ..., n:

[E, a]
k
 = E

k

and:

[E, a]
n+1

 = a.

The following equations easily derive from the definition (1) of F, for k = 0, ..., n, with F
0
(E) = 1 and F

n+1
(E) = 0:

F
k+1

([a, E]) = –aF
k
(E) + F

k+1
(E) ...(2)

which explicitly gives all the following equations:

F
1
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1
(E)

F
2
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1
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2
(E)

..........

F
n
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n
(E)

F
n+1

([a, E]) = –aF
n
(E) ...(3)

Then, from the definitions of [a, E], [E, a], the equations above are synthesized, for any a   , and 0a  , by the
recurrent coefficient equation:

F([a, E]) = –a[1, F(E)] + [F(E), 0] ...(4)

Now, let 1n
mE H    , then we can suppose with no loss of generality (the order of components is not

relevant in the determination of the F-image) that E = [a
1
, A

n
], with A

n
 = (a, a

2
, ..., a

n
) where –mu < a < mu and a

i
 = +mu,

for i = 1, 2, ..., n, that is, E is a point of the edge between vertices (a
1
, mu, a

2
, ..., a

n
) and (a

1
, –mu, a

2
, ..., a

n
) of H

m
.

According to the recurrent coefficient Equation (4) the following inequalities hold, which give a lower bound of the
radius (F(H

m
)):
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        , 1, , 0n n nF E F mu A mu F A F A           ...(5)

   1, 1,n nmu F A F A        ...(6)

   1 1, 1nmu F A mu      ...(7)

3. Conclusion

In conclusion, the radius of F(H
m
) grows with m, therefore any of the blocks of H (which is a covering of n+1) is

included in the image of some block of H. Then, F is surjective.
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